Myosin IIB and F-actin control apical vacuolar morphology and histamine-induced trafficking of H-K-ATPase-containing tubulovesicles in gastric parietal cells.
نویسندگان
چکیده
Selective inhibitors of myosin or actin function and confocal microscopy were used to test the role of an actomyosin complex in controlling morphology, trafficking, and fusion of tubulovesicles (TV) containing H-K-ATPase with the apical secretory canaliculus (ASC) of primary-cultured rabbit gastric parietal cells. In resting cells, myosin IIB and IIC, ezrin, and F-actin were associated with ASC, whereas H-K-ATPase localized to intracellular TV. Histamine caused fusion of TV with ASC and subsequent expansion resulting from HCl and water secretion; F-actin and ezrin remained associated with ASC whereas myosin IIB and IIC appeared to dissociate from ASC and relocalize to the cytoplasm. ML-7 (inhibits myosin light chain kinase) caused ASC of resting cells to collapse and most myosin IIB, F-actin, and ezrin to dissociate from ASC. TV were unaffected by ML-7. Jasplakinolide (stabilizes F-actin) caused ASC to develop large blebs to which actin, myosin II, and ezrin, as well as tubulin, were prominently localized. When added prior to stimulation, ML-7 and jasplakinolide prevented normal histamine-stimulated transformations of ASC/TV and the cytoskeleton, but they did not affect cells that had been previously stimulated with histamine. These results indicate that dynamic pools of actomyosin are required for maintenance of ASC structure in resting cells and for trafficking of TV to ASC during histamine stimulation. However, the dynamic pools of actomyosin are not required once the histamine-stimulated transformation of TV/ASC and cytoskeleton has occurred. These results also show that vesicle trafficking in parietal cells shares mechanisms with similar processes in renal collecting duct cells, neuronal synapses, and skeletal muscle.
منابع مشابه
Rab proteins in gastric parietal cells: evidence for the membrane recycling hypothesis.
The gastric parietal cell secretes large quantities of HCl into the lumen of the gastric gland in response to secretagogues such as histamine. In the membrane recycling hypothesis, this secretory activity requires the trafficking of the gastric H+/K(+)-ATPase to the cell surface from intracellular tubulovesicles. The Rab subclass of small GTP-binding proteins is thought to confer specificity to...
متن کاملCytological transformations associated with parietal cell stimulation: critical steps in the activation cascade.
Cultured rabbit parietal cells were used to evaluate morphological responses to activators and inhibitors of HCl secretion. Immunofluorescence was used to localize the proton pump protein, H, K-ATPase, and the apical membrane-cytoskeletal linker protein, ezrin; fluorescent-labeled phalloidin was used as a marker of F-actin. Treatment of healthy control parietal cells with secretagogues resulted...
متن کاملIndependent trafficking of the KCNQ1 K+ channel and H+-K+-ATPase in gastric parietal cells from mice.
Gastric acid secretion by the H(+)-K(+)-ATPase at the apical surface of activated parietal cells requires luminal K(+) provided by the KCNQ1/KCNE2 K(+) channel. However, little is known about the trafficking and relative spatial distribution of KCNQ1 and H(+)-K(+)-ATPase in resting and activated parietal cells and the capacity of KCNQ1 to control acid secretion. Here we show that inhibition of ...
متن کاملGastric Acid Secretion from Parietal Cells Is Mediated by a Ca2+ Efflux Channel in the Tubulovesicle.
Gastric acid secretion by parietal cells requires trafficking and exocytosis of H/K-ATPase-rich tubulovesicles (TVs) toward apical membranes in response to histamine stimulation via cyclic AMP elevation. Here, we found that TRPML1 (ML1), a protein that is mutated in type IV mucolipidosis (ML-IV), is a tubulovesicular channel essential for TV exocytosis and acid secretion. Whereas ML-IV patients...
متن کاملRab11a redistributes to apical secretory canaliculus during stimulation of gastric parietal cells.
Previous investigations in several systems have demonstrated that Rab3 family members redistribute to soluble fractions on fusion of secretory granules with target plasma membranes. Rab proteins are then recycled back onto mature secretory vesicles after reinternalization of the membrane. Although this cycle is well established for Rab3, far less is known about redistribution of other Rab prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 306 8 شماره
صفحات -
تاریخ انتشار 2014